Catalog Number 26-2204

An Overview of the TRS-80 |
Model I/ITlI Compiler Basic Manual

The four sections in this manual contain the information you
need to use Radio Shack’s compILER BAsIC. We suggest that
you begin by running through the steps in the first chapter of
Section 1, “Operating Compiler BasiC”

The four sections are:

1/Operating Compiler BASIC

Takes you through the steps of operating Compiler Basic from.
starting up the system to typing, debugging, compiling,
running, and saving programs. Includes alphabetical entries
on each BASIC command.

2/Programming in RSBASIC

Shows you how to write programs using the RsBASIC
programming language. Includes alphabetical entries on each
BASIC keyword.

3/BEDIT

Explains how to use BEDIT to edit your BASIC source programs.

4/Programmer’s Information Section

Gives background information on the Compiler BAsIC
development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

This manual complements the information in your Model I/III
Operations and TRSDOS manuals. If you need more
information on your Model VIII computer system, we refer
you to these manuals.

COPYRIGHT NOTICES

TRS-80 MODEL V/1II COMPILER BASIC

© ® 1981 by Ryan-McFarland Corporation

Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL I/III DISK OPERATING SYSTEM (TRSDOS)
© ® 1981 by Tandy Corporation. All rights reserved.

TRS-80 COMPILER BASIC MANUAL

© 1981 by Tandy Corporation. All rights reserved.

Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been taken in the
preparation of this book, the publisher assurnes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

IMPORTANT NOTE FOR
MODEL /11l COMPILER BASIC USERS
(Catalog Number 26-2204)

It is important to note that when using Compiler BASIC with a Model | or a
Model I, the minimum system requirements are:

® Two Disk Drives

® A 48K system.

When starting up the Model | system, the Run-Time Diskette (the Compiler
BASIC system diskette) must be in Drive @. The Program Diskette must be in

Drive 1. When using Model |11, the Program Diskette must be in Drive 0.

Also note that Model | will not prompt you for the date'and time as Model
LT will.,

Thank-Youl!

EA DIVISION OF TANDY CORPORATION

8759129-781

How Compiler BASIC Works

The BAsIC programming language must translate all your
BASIC instructions to an object code the computer
understands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model I/Ill is an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
in two stages. First, it compiles the entire program to an
intermediate object code. Then, when running the program,
it translates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

® The program will take up much less space in memory and
on diskette.

@ No one using your program will be able to read your
“source” BASIC instructions.

By your purchase of the software product described in this
book, you have obtained a license to duplicate TRSDOS and
Model I/III BASIC only as necessary for personal use on your
Model I/III Micro-Computer.

If you intend to sell BasIC applications programs you have
written for the Trs-80 Model I/III, you must follow the
procedure below to avoid violation of this license and of the
copyright laws.

The complete Radio Shack Basic Development System
(26-2204) includes the TRSDOS™ operating system, the
RSBASIC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RSBASIC produces an intermediate code which can only be
executed by the runtime system RUNBASIC. Therefore, your
compiled program will require that the user have TrRsDOS and
RUNBASIC from Radio Shack.

Since you may not duplicate TRSDOS Or RUNBASIC for resale,
you have two options for selling a copy of your own program:

A. Purchase a RUNBASIC/TRSDOS runtime system diskette
(Catalog Number 26-2208 for Model I, Catalog Number
26-2209 for Model I1I) from Radio Shack. Copy your compiled
program onto this diskette, and sell this diskette to your
customer. The copyright notices affixed to that diskette must
not be removed or hidden from view. For each copy of your
program you sell in this manner, you must purchase the
RUNBASIC diskette and copy your program onto it.

B. Sell your compiled program without TRSDOS and
without the Basic runtime. Instruct your customer to purchase
a RUNBASIC/TRSDOS runtime from Radio Shack.

The Model I/IlI BAsIC Interpreter programs are not meant
to be run under Compiler Basic. Radio Shack does not
recommend converting BASIC Interpreter programs.

Important Note to
Model Ill Users

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making

any modifications to your existing software packages (applications, lan-

guages, or system utilities):

» Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

- Before converting a Radio Shack supplied Model | software package to a
Model Ill format, check to see if Radio Shack provides a Model Il version
of the package. If so, you should obtain a copy of that version.

* If you're using several different software packages, press the RESET but-
ton whenever you change software.

Thank-You!

Radie fhaek

& A Division of Tandy Corporation

8759106

% d ok Kk X * * %k %k k £ *x * ¥ 4 * %

ALL USERS MODELS I/III
IMPORTANT NOTICE PLEASE READ FIRST

* ¥ ¥ ¥ ¥ %
* % ¥ H ¥ %

k% k% k k k k %k k * % k k k *k *x k %

R T T T N I T T T S I T T N T T T T T S T T T T T T e I S e e e T e T SESENT TSI ImIm I IS L

STOCK ADDENDUM PAGES TO READ

NUMBER

26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7
MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26~-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

*k*******%k*&******

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

* X% K o ¥ %
¥ % * ¥ ¥ %

* k k ok ok X k Kk k %k %k k k Kk Xk k % *

UPGRADE UTILITY ON TRSDOS 2.3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

NEW: TRSDOS 2.3B.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function,

data: Information contained in a file which is

used by a progranm.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.

_ If this diskette is placed in drive 0 and

the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

JPGRADE: A program contained on the TRSDOS 2.3B
diskette.

v’c#***‘k**k*****

MODEL III USERS
IMPORTANT NOTICE PLEASE READ FIRST

* % % % % %
¥ % % % %

*****************’k

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively,

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.

XFERSYS: A program contained on the TRSDOS 1.3
diskette.

k ok R ok 0k h & B % kR Ok k& 0k % % % % & % % * %
% *
* OWNERS OF THE MODEL I, SERIES-I EDITOR *
¥ ASSEMBLER, BASIC Compiler, BASIC Runtime *
* COBOL Compiler, COBOL Runtime *
% *
* Ok % k& kR % kK K Ok Ok K B £ k % £ % % * % k %

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. Variable length records have been corrected, in all
aspects.

2. In most cases, your computer W*LT not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.
4. The following commands have been added:

CLS
This command clears the displav and puts it in the 64-
character mode.

PATCH 'filespec' (ADD = aaaa,FIND = bb,CHG = cc)
This command lets vou make a change to a program file.
You need to specify:

'aaaa' ~ a four
the memory
change

address specifying
data you want to

'bb’ - the contents of the byte you want to find
and change You can gpecify the contents of
a.

more Lhan cne by
'cc' - the new conten

For example:

PATCH DUMMY/CMD (ADD=4567, D=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3RBR0OQ.

=

NOT FOUND error
does not exist, or

If this command give:
message, this means at
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at
a time. For exarpie

[m
[V
o]
joe
9
=
A
Z
G
I

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3RB)
replaces the contents of the second byte in the above
example,

- 3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:

COPY FILEl:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #RecC #Grn #Ext EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

*%% 171 Free Granulesg ***%

l. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *
(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:
0 - total access
1 - kill the file and everything listed
below
2 - rename the file and everything listed
below
- this designation is not used
- write and everything listed below
read and everything listed below
- execute only
- no access

N oYU W
i

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file. '

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
- type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the

screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2.3B
FILEl EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/sYs SYS1/SYS SYS2/8YS
SYS3/SYS SYS4/SYS SYS5/8YS
SYS6/8YS FORMAT /CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine” under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the scurce program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:Q

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7DOO',END=X'7DO9',TRA=X'7DOO')

Reference Section 4 of your manual and note that X'7000°'

is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the

BASIC interpreter as a user's external subroutine.

875-9119

T o I i 0 i i s i 2 > e e s it i S 52 e e i o e s s e e s s o 0 e e o

sSection 1

Operating |
camp“er‘ | CAT. NO.
BASIC 26.2204

General Information
Compiler Use, Start-Up,
Commands

| Radio Shaek REEEEY sortware |

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

kkhkkhkhkhkkkhkhkkhhkhhkkhhkhhkhkkhkhkkhkkhkhkkhkkkkkhkkhkkik

Chapter 1

* *
* *
* *
* USING COMPILER BASIC *
* *
* *

khkkkkkkkkhkkkhkkhkkkhkkhkhkkkkkhhkkhhhkhkhkkkkkkkkkkkk

Radio fhaek

TRS-80™

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, Or

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other people to operate by simply using the Runtime System.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see

the Programmers Information Section. Also see the appendix for

information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

TABLE OF CONTENTS
SECTION 1. OPERATING COMPILER BASIC

Chapter 1.

Using Compiler BASIC ..ccoccocccscococscococss 1-1 to
Takes you through the steps of loading 1-13
and operating Compiler BASIC. |

Chapter 2.

CommandS ..ceocococososscocsssocoscososccsscoess 2-1 to
Contains alphabetical entries on each 2-36

Compiler BASIC command.

Radie fhaek

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

INTRODUCTION

This chapter quickly runs through the mechanhics of loading and
operating the Model I/III BASIC Compiler. We only mention
certain BASIC commands to illustrate how to operate the
Compiler. The details on each command are in the Commands
Chapter. Details on the Compiler itself are in the Programmers
Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

I. Starting Up Model I/III Compiler BASIC
A. Setting the Date and Time
B. Loading RSBASIC

IT. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

ITI. Using the Diskettes

Assigning File Specifications
Storing a Program on Diskette
Clearing Memory

Loading Programs from Disk
Storing Data Files on Diskette

HOOQw»

Radie fhaek

PAGE 1 -1

MODEL I/III COMPILER BASIC
TRS-80™

USING COMPILER BASIC

Inserting a diskette

Radie fhaek

PAGE 1 - 2

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

STARTING UP MODEL I/III COMPILER BASIC

Before loading Compiler BASIC, you need to initialize the Model
I/III disk operating system by setting the date and time. The
operating system, called TRSDOS, is on your RSBASIC diskette and
is loaded automatically when you press the reset button.

The Model I/III Operations Manual explains how to connect and
power-up the Model I/III, and how to properly insert a diskette.
SETTING THE DATE AND TIME
As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YY form and press <ENTER>. For
example:

04/01/80 <ENTER>
sets the date for April 1, 1981.
Next, the system prompts you for the time. To skip this
question, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH:MM:SS form. For example:

14:30:00 <ENTER>
starts the clock at 2:30 PM.
The system returns with this message:
TRSDOS READY
At this point you may execute any TRSDOS command or load
RSBASIC.
LOADING RSBASIC
The simplest way to load RSBASIC is to type:

RSBASIC <ENTER>

Radie fhaek

PAGE 1 - 3

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

After taking a few seconds to load, BASIC displays a start-up
heading like this:

TRS-80 MODEL I/III COMPILER BASIC (RSBASIC ver 2.4)

(C) 1981 BY RYAN-MCFARLAND CORP. LICENSED TO TANDY CORP.
*

You may now begin programming in BASIC.

Options for Loading RSBASIC

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=xxXX
'filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing
the top memory address accessible by BASIC
'xxxx' is a hexadecimal address representing the
size of the stack area to be used by BASIC.
"filespec',T='nnnn', and S='xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:1l

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn (where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

Radie fhaek

PAGE 1 - 4

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

TRSDOS READY
RSBASIC (T=BF00)

loads RSBASIC. BF00 (decimal 48896) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP (T=E000)

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over E000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO (decimal
192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC (S=0180)

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC (T=E000, S=0180)

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over EO000.

Radie Shaek

PAGE 1 - 5

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

PROGRAMMING WITH RSBASIC

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. You must
press <ENTER> to signify the end of the line. This is an
example of how to type a program line:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line

2. CHANGE - replaces one group of characters on program
lines with another.

3. DELETE - deletes one or more program lines

4., DUPLICATE - duplicates one or more of your program lines
in a different part of your program.

5. RENUMBER - renumbers your program.

6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>
Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE.

The Model I/III keyboard has certain special keys which are
helpful in typing program lines and commands:

Radie fhaek

PAGE 1 - 6

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

k_B cksp ces'the cu 301 *efasiﬁ§ft e U:

<ENTER>

:'~fEnters 4 space (blﬁ ﬂ
moves the cursor one;character

‘“f[forward.:
shift <- Erabes the current llne. Use this
when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay
before that program is executed in order for BASIC to compile
the program.

The BASIC command for executing a program is RUN. To execute
this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>
BASIC compiles and then executes the program. While the program
is executing, the Computer is under control of the program.

These are the two special keys you may use to interrupt
execution of the program:

Radie fhaek

PAGE 1 - 7

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

<BRE K>ﬁ Termlnat
. 1Dur1ng l

‘the <ENTER> key.;

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time with the same values
it had in variable memory the last time it was Run.

Debugging the Program

RSBASIC has four commands to help in debugging a program:

1. TRACE - sets up a tracer which displays each line number
as it is being executed.

2. BREAK - sets breakpoints in the program which break
program execution.

3. STEP - executes a certain number of lines in the program.

4. GO - continues program execution at the next executable
statement.

These commands are detailed in the Commands section.

Radie fhaek

PAGE 1 - 8

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

USING THE DISKETTES

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, the write-protect
notch on the diskette must be uncovered. Cover the notch to
write-protect your valuable diskettes.

Label Leave Uncovered Cover for
to allow Disk Writes 'Write-Protection

Sector Hole Jacket Read/Write
Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or
remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

Radie fhaek

PAGE 1 - 9

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load the
program by specifying the file name you gave to the file when
you stored it.

The complete syntax for a file specification is:

filename/ext.password:d
"filename' is any name up to seven characters
beginning with a letter.
'/ext' is an optional extension to the filename
consisting of up to three characters.
'.password' is an optional password with up to
eight characters.
":d' is an optional drive specification (0,1,2, or 3).
You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only ‘'filename' is essential. Both '/ext' (extension) and
' .password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive
system, it specifies which drive you are using for storage.

Examples of file specifications:

BOOK/BAS .ABCDE: 2
The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM

The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,
BASIC will use the first available drive beginning with drive 0
(the built-in drive).

ACCOUNT1/CMP:1

Radie Sfhaek

PAGE 1 - 10

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

The filename is ACCOUNT1l. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: For more information on TRSDOS file specifications see
your Model I/III Disk Operating System Manual.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10

You may type:
SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive 0 -- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

Radie fhaek

PAGE 1 - 11

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80

For this reason, you might want to check the diskette's
directory, before you go into RSBASIC, to see what files are
already on the diskette.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below).

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program.
If you ever need to modify it, you simply edit the original
source program and re-compile it.

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in memory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

Radie fhaek

PAGE 1 - 12

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
example:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is loaded,
you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC

of fers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>
Loads from diskette the program named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the program
may be executed with RUN.
Unlike OLD, LOAD does not clear memory when it loads a program.

Therefore, you may load a series of Compiled programs into
memory.

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

Radie fhaek

PAGE 1 - 13

TRS-80™

dkhkdkkhhhkhkkhkhkhkhkhhkhkkhhhkhkhkhkkkhkhkkhkhhhkkhkhkkkhhkhhkkhkk

* *
* Chapter 2 *
* *
* COMMANDS *
* *
* *

kkkhkhkhkkkhkkkhkkhkhhkhkhkhkkhkkhhhhhhhhhhkhhhhhhhhk

Radio fhaek

B

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each
command. The format for each command is explained on the next
two pages. On the following page is a brief introduction to
commands.

OUTLINE FOR CHAPTER 2

COMMANDS
I. Format for the Command Entries
II. Introduction to Commands

ITI. Alphabetical Entries for each Command

Radie fhaek

PAGE 2 -1

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

FORMAT FOR COMMAND ENTRIES

l. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself
and may also contain:

b. parameters

c. options
If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. In the syntax illustrated
here, you must specify 'startline' and 'endline', if you choose
to use these parameters.

3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

Radio fhaek

PAGE 2 - 2

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-- COMMAND --
LIST (1)

Display Program Lines

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

(3)
You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except L e d L
Examples
LIST
(4)

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radie fhaek

PAGE 2 - 3

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION TO COMMANDS

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter is 50-80.

When typing a command with a parameter, there must be a space or
a comma after the command. This, for example would produce an
error:

*LIST50-80
A few of the commands also include options:
*LIST 50-80 (PRT)
lists lines 50-80 on the line printer. The option is (PRT).

Options may always be omitted from the command if you don't want
to use them.

Radie fhaek

PAGE 2 - 4

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-~ COMMAND --

APPEND
Append Two Programs

~a BASIC source program.

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process
by pressing <BREAK>. The lines already Appended will stay in
your resident file, so if you <BREAK> in on the APPEND command,
be sure to Delete those added lines if you do not want them in
the resident file.

Only source programs can be appended. You can not use APPEND to
append an object program from disk which was created with the
COMPILE command.

Resident Program

e

Disk Program
i

20

Radie fhaek

PAGE 2 - 5

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Examples

APPEND PART2/BAS:1

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 is appended to the resident program. Since no drive is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

Radie fhaek

PAGE 2 - 6

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

~-COMMAND --

AUTO
Number Lines Automatically

AUTO startline, increment

"startline' is a line number specifying the first
line number to be used.

'increment' is a number specifying the increment
to be used between lines. If increment
is omitted, 10 is used.

If both 'startline® and 'increment' are omitted,
startline will be the last line plus 10 and
increment will be 10.

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
your program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies you with a line number that has an
asterisk beside it, this means you have already used this
program line. Press <ENTER> if you do not want to change the
line.

Examples

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

Radie fhaek

PAGE 2 - 7

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™ B
by 10. =

AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

Radie fhaek

PAGE 2 - 8

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND --

BREAK
Set or Remove Program Breakpoints

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400
This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters any of these lines.

The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

Radio fhaek

PAGE 2 - 9

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

CHANGE
Change Program Lines

. CHANGE startllne—endllne del oldstrlng del
~ newstring del A ~ o
'startline’ and dllne 'are llne numbers specifying
- the lower and upper limits of program lines ;
that will be changed If ‘endline' is omitted,
only 'startline' will be changed. If both ‘
'startline' and 'endline' are omitted,
; the entire program‘will‘befchanged;
oldstrlng and newstrlng are string constants
‘del’' is any non-numeric character other than "-".
If A is omitted, only the first occurrence of
'oldstring' in a program line will be changed.

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.

Examples

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines from 100 to 200 are
changed to "LPRINT". Notice that since the A option is not
used, only the first occurrence is changed. 1In this example,
slashes are used as delimiters, although any other character
besides the hyphen could have been used.

CHANGE, TAB(10) ,TAB(5) ,A

Every occurrence of "TAB(1l0)" is replaced by "TAB(5)" in all of
the lines. Commas are used here as delimiters.

CHANGE 500-1000/REM/

The first occurrence of "REM" in all lines from 500 to 1000 is

®

Radie fhhaelk

PAGE 2 - 10

MODEL I/III COMPILER BASIC
TRS-80™

COMMANDS

changed to the null string; i.e., deleted.
CH 100/J0OHN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON"
"JAMES KNIGHT".

Radio fhaek

in line 100 to

PAGE 2 - 11

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-~ COMMAND --

CLEAR
Clear All Programs from Memory

; CLEAR,

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
object programs from memory.

Example

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

Radie fhaek

PAGE 2 - 12

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~- COMMAND --

COMPILE
Compile BASIC Program

COMPILE source frle, object flle (LIST, PRT llstlng;f
. s urce flle‘ and ~ob3ectiflle'eare‘TRSDOS~f11e; .
~_specifications.
o 'source file' is a BASIC source program flle .
1_‘ 'object file' is the object arogram flle that :
~ COMPILE w1ll create ; -
All the options. below may be omltted-~“ .
LIST genera~ S a source llstlng contalnlng thefﬁ‘
~module rel tive location of every statement.
PRT causes all listings to be prlnted on the ;
line pr1nter.,y~ ‘

PRT*'llstlng flle' Routes the printer- formatted
‘ llstlng to the specified flle. This must be
used in conjunctlon with LIST, XREF, or MAP.

| MAP generates a memory map showing the Locatlon of
_each variable in the program.
XREF prints a cross reference of every reference .
to every varlable in the program. ;

COMPILE translates and saves a BASIC program on disk as a
pseudo-code program. Once a program is compiled, it is no
longer a BASIC program. It may not be changed.

For this reason, it is advisable to keep a disk copy of your
BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alone Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

Radie Shaek

PAGE 2 - 13

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

To compile a BASIC program, follow this procedure:

1. use the SAVE command to save your BASIC source program

file on disk. Then you may ...
2. use the COMPILE command to create an object code program
file on disk from the BASIC source program file.

If the file name you assign to the compiled program already
exists, the existing file's contents will be wiped out. It will
be replaced by your program.

COMPILE can be used with four options:
A. LIST generates a listing of the program containing the

relative memory location of every statement. In the listing
below:

*COMPILE DEMO/BASs DEMO/OBRJ (LIST)

rafralralhy 18 REM #%% SAMPLE PROGRAM TO COMPILE %%%
alrlrge] <@ DIM A(5)

il B3 FOR I = 1 TO 5

Bo1é 40 ACI) = 1 + 10

Boazb 50 NEXT I

AaED 60 B$ = "THIS IS5 A SCALAR VARIABLE"

Ba3z 0 ChL = 4

Bo37 BO D = 5,234

FINAL SUMMARY
142 (Q@BE) BYTES OF PROGRAM
332 (B14C) BYTES OF LOCAL DATA
8 SO0URCE LINES
8 SOURCE STATEMENTS
#%% COMPILATION COMPLETE ###%
¥*

l. the source program is displayed

2. the relative memory location of each statement is
displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 401A.

3. the final summary displays that the entire program uses
142 bytes of memory. The variables in the program use 332
bytes.

Radie fhaek

PAGE 2 - 14

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

B. MAP shows the hexadecimal memory location of the
variables in the program. In the example below:

#COMPILE DEMO/BASs DEMO/OBRJ (MAP)
SYMROLLIC MEMORY MAF

SCALARE

BB78 B STRING#*:255 DBAD c INTEGER
BRaz D REAL. DABE I REAL
ARRAYSE

aa7o ACE) REAL.

*

the program contains four scalars (simple variables) and one
array variable. 1In this example B is a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 0070.

C. XREF generates a cross reference listing. Each variable
is cross referenced with all the line numbers which referenced
it. In the example below:

#*COMPILE DEMO/BASs DEMO/OBJ (XREF)
CROSS REFERENCE LISTING

SCALARS

B 60

C 70

D 80

I 30 40 48 50
ARRAYS

A 20 48

#*

the variable I is referenced on lines 30, 50, and twice on line
40.

D. PRT causes any of the above listings to be listed on the
line printer.

Radie fhaek

PAGE 2 - 15

MODEL I/III COMPILER BASIC COMMANDS

TRS-80

E. PRT = 'listing file'. This causes the listing to be saved
in the specified file. This option must be used in conjunction
with LIST, MAP, or XREF. For example:

COMPILE FILE/BAS, FILE/OBJ (LIST,; PRT=FILE/LST)
creates a listing file containing a list of FILE.
COMPILE FILE/BAS, FILE/OBJ (MAP, PRT=FILE/LST)
creates a listing file containing a map of FILE.
To print the listing file, you must use a special program named

LIST/OBJ, which is on your Compiler BASIC diskette. 1Instructions
on how to use it is in the Appendix "LIST and SAMPLE Programs"”.

Examples

COMPILE BILLING/BAS:0, BILLING/CMP:1

The program BILLING/BAS in drive 0 is compiled and saved as a
pseudo-code program named BILLING/CMP on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo-code program
named OBJECT. .

COMPILE PAYROLL/BAS, PAYROLL/CMP (LIST, PRT)
The source program PAYROLL/BAS is compiled and saved on disk as
the pseudo-code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP (MAP, XREF)

BASIC compiles this file and displays a memory map and a cross
reference listing.

Radie fhaek

PAGE 2 - 16

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

== COMMAND =-

DELETE
Erase Program Lines from Memory

11ne number
,deletlon‘
ine ‘number
ur program
1at o ant t __ 'endline' must @ ;
. .,“erence an ex1st1ng program;llne.,;- ‘ -
f‘e:;,omltted, only ’startlln ! w'll be deleted. .

DELETE removes one or more program lines from memory. Another
way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110
Erases lines 50 through 110, inclusive.
70

Erases line 70.

Radio fhaek

PAGE 2 - 17

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

== COMMAND =--

DISPLAY
Display Variable Contents

DISPLAY subname* varlable llst, subname, varlable
name. .. -

~ 'subname' is the name of a subprogram. If

omltted, the variable contents of the maln
program w1ll be dlsplayed ~ -

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.

Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

DISPLAY A

Displays the contents of variable A in main memory.
DISPLAY A,BS

Displays the contents of variables A and B$ in main memory.
DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Y in
the main program or subprogram being executed.

Radio fhaek

PAGE 2 - 18

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
~- COMMAND --

DUPLICATE
Duplicate Program Statements

DU LICATE startllne—endllne, new startllne o
- artline' and 'endline' are the lower and upper
boundarles of the lines you want to dupllcate. -
If 'endllne"‘s omltted, only startllne w1ll
~ be duplicated. '
_ 'new startline' is the program line which you want
 the duplicated lines to follow. 'New startline'
‘ must be a current program line. = -

s

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a
compiled object code program.

Examples

- D > - —— — o =

DUPLICATE 100-150, 300
The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51.

Radie fhaek

PAGE 2 - 19

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND --

GO
Start or Continue Program Execution

GO continues execution of the program after a breakpoint has
been encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

Starts or continues executing the program.

Radie fhaek

PAGE 2 - 20

MODEL I/III COMPILER BASIC

KILL
Delete File from Disk

-- COMMAND --

TRS-80

COMMANDS

KILL deletes the file you specify from the diskette directory.
You may Kill a file you will not use again to make room for

storing another file.

If you do not specify
BASIC will search for
and delete it.

Make sure that you do not Kill an open file.

the OPEN statement to
file.

Examples

KILL FILE/BAS

deletes FILE/BAS from
contains it.

KILL DATA:2

deletes DATA from the

a disk drive in the file specification,
the first drive that contains the file,

If you have used

open a file, close it before Killing the

the diskette in the first drive that

diskette in drive 2 only.

PAGE 2

Radie fhaek

21

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
- COMMAND --

LIST
Display Program Lines

LIST startllne—endllne strlng Af(PRT)7~"’
'startllne is a) i
limit for the
‘ endllne is g 1i
. for the llstlng.‘ If omltted only startllne
- ;*;jw1ll be listed. o
‘ j'strlng is a strlng constant or a strlng varlable.s
- 1f A is omltted only the first statement which
~ contains strlng w1ll be llsted strlng A may .
. be omitted .
';~QPRT causes the 115t1ng to appear on the 11ne prlnter
- rather than the video dlsrlay - ~
Va*Note-. if both 'startllne and encllne are omltted,
*ﬁjthe entlre program w1ll be llcted,;_1~~m~ .

1number spe01fy1ng the uoper llmlt":f

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the-lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters

except - "
Examples

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radie fhaek

PAGE 2 - 22

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

Displays line 50
LIST 50-85

Displays lines 50 through 85, inclusively.
LIST 50 (PRT)

Prints line 50 on the line printer.
LIST 50-85 (PRT)

Prints lines 50 through 85, inclusively, on the line printer.
LIST "PRINT" A

Lists all statements which contain the word PRINT
LI /INSERT/

Lists the first statement which contains the word "INSERT".
LI 50-80/INSERT/A (PRT)

Lists all statements between line 50 and line 80, inclusively,
which contain the word INSERT, on the line printer.

LI 50-80/INSERT/ (PRT)

Will cause a syntax error.

Radie fhaek

PAGE 2 - 23

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
~- COMMAND --

LOAD
Load Compiled BASIC Programs

LOAD file ~ - ‘ ' -
'file' is a TRSDOS file spe01f1catlon for a .
complled object code program.

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
only load object code programs. Use OLD to load BASIC source

programs from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
be loaded before executing them. The loading process links the
programs together.

Examples

- —— -

LOAD PROG1l/CMP:2
This loads PROGl/CMP from drive 2.
LOAD PROG1l/CMP
Since no drive specification is included in this command, BASIC
gill begin searching for this program file, starting with drive
LO SUBPROG/CMP:1l

BASIC loads this subprogram from drive 1.

Radie fhaek

PAGE 2 - 24

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

MERGE
Merge Disk Program with Resident Program

MERGE file - .
 'file' is a TRSDOS flle spec1f1cat10n for a BASIC
source flle. . ;

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and
merges it with the BASIC program you presently have resident in
memory .

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on
the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and
20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

Radie fhaek

PAGE 2 - 25

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
Resident Program Disk Program Merged Program
20 -
30 20
- >
30
Examples i
MERGE PROG -

This merges the BASIC source program on disk named PROG with
whatever BASIC program is resident in memory.

ME PROG/BAS:1

This merges PROG/BAS from the disk drive number 1 with the BASIC
program resident in RAM.

Radio fhaek

PAGE 2 - 26

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

NEW
Erase BASIC Program from Memory

. NEW

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command.

Example

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep your compiled subprograms in
memory to use with your next BASIC program. By executing the
command :

NEW
Your majin BASIC program is erased from memory, but all object

programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

Radie fhaek

PAGE 2 - 27

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

~= COMMAND --

OLD
Load BASIC Source Program

OLD fllejﬂik .- .
_efllev‘ls a TRSDOS flle spec1flcat;

BASIC source program flle -

The OLD command loads a BASIC source program, saved on disk,
into RAM. OLD will only load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs before loading a
program, only one BASIC program may be loaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

OLD PROG/BAS:2
Loads PROG/BAS into RAM from drive 2.
OL PROG/BAS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

Radie fhaek

PAGE 2 - 28

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND =--

RENUMBER
Renumber Program

,RENUMBER newllnek

;cce551ve re
' omltted 10‘
If both 'newllne and 1ncremen,,~are omltted,:lo

lS used for newllne and 10 for 1ncrement. -

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON...GOTO, ON...GOSUB, and ON ERROR GOTO.

Examples

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

Radio fhaek

PAGE 2 - 29

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

RUN
Execute Program

RUN file - ' -

“'flle' 1s a TRSDOS flle spec1flcat10n. It may .
be a BASIC source program file or an obje"t
code program File. If omltted the re51dent
program w1ll be run. ;

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there
will be a short delay while RUN is complllng the program before
running it.

If you include a file specification, BASIC will Load or 01d the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.
RUN
Executes the program in resident memory.

RUN PROGRAM/CMP:?2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
it.

RUN PROGRAM/BAS
Loads the BASIC source program PROGRAM/BAS and executes it.
RU PROGRAM

Loads the program PROGRAM and executes it.

Radie fhaek

PAGE 2 - 30

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

SAVE
Save BASIC Source Program on Disk

le! lS a TRSDOS flle spec1f1catlon., 1f

"omltted, the“program will be saved under

“thé»fiie;Spe "flcatlon used 1n the last
OLD command . . .

BASIC has two commands for storing programs on a disk file: SAVE
and COMPILE. SAVE stores the program in its existing BASIC
source program format. COMPILE converts the program and stores
it as an object code or machine language program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section
on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled 'programs.

A Saved program is in ASCII code or text format.

Examples

SAVE FILE1l/BAS.JOHNQDOE:3

Radio fhaek

PAGE 2 - 31

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Saves the resident BASIC program. The filename is FILEl, the

extension is /BAS, and the password is JOHNQDOE. The file is
stored on the disk in drive 3.

SAVE FILEl/BAS

Saves the resident BASIC program. The filename is FILEl and the
extension is /BAS. Since no drive is specified, BASIC will
store the program in the first drive which has room for it.

SA

Saves the resident BASIC program. It will be saved under the
same file specification used in the last OLD command.

Radio fhaek

PAGE 2 - 32

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

SIZE
Print Used and Unused Memory

By executing the SIZE command, BASIC will print the amount of
space being used by the resident program and the amount of space
that is unused. The values are expressed in bytes both as a
decimal and a hexadecimal value.

Example

SIZE

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

Radie fhaek

PAGE 2 - 33

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
~- COMMAND --

STEP
Execute Portion of Program

STEP number

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute

the entire program portions at a time using STEP.

Example

STEP 5

Executes the next five statements in the program.

Radie fhaek

PAGE 2 - 34

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

SYSTEM
Return to TRSDOS

SYSTEM

SYSTEM returns you to TRSDOS, the disk operating system.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will
be lost.

Radie fhaek

PAGE 2 - 35

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-= COMMAND --

TRACE ON, TRACE OFF
Turn Tracer On, Off

. TRACE OFE

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to a
new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF
Turns off the tracer.
TRACE

Prints whether the tracer is on or off.

Radie fhaek

PAGE 2 - 36

Section 2
Programming .‘ - CAT. NO.

with RSBASIC memees

information on writing
a program with RSBASIC

CUSTONM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press,
1977.

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.

BASIC Concepts ..cocevecccoccscoscsonsos 3-1 through
Explains how BASIC handles and 3-37
manipulates data

Chapter 4.

Building Data Filesoceooccooonooscas 4-1 through
Shows how to create and store 4-39
data files

Chapter 5.

Segmenting ProgramsS ...c.coocooooooccococose 5-1 through
Demonstrates how to divide a 5-14

long program into shorter programs
and subprograms

Chapter 6.
BASIC Keywordscccccecoososcsccnsos 6-1 through
Contains an alphabetical entry 6-195

for each keyword

Radio fhaek

TRS-80™

SPECIAL MODEL I/III PROGRAMMING TIPS

Programming the Video Display

The Model I/II1 Video Display has two modes: scroll and
graphics. With the exception of graphics characters, BASIC
prints all output to the display using the scroll mode. See
PRINT for information on programming in the scroll mode. See
CRTG for information on programming in the graphics mode. (Both
PRINT and CRTG are in the Keywords Chapter).

Radie fhaek

TRS-80™

khkkhkhhhkhkkhkhkhkhkhhkkhkkhkhkhkkhkkhkkhkhkhkhkhkhkhkhkhkkkhkkkkhkkhkkkhkkkhkhkkhhkik

* *
* Chapter 3 *
* *
* BASIC Concepts *
* *
* *

kkhkkkkhkkkhkhkhkhkhkkhhhkhkhhkkhkhkkhkkhkhkhhhkkkkkhkkhkkhkhkkhkkhkkhkkkkk

Radie fhaek

MODEL I/III COMPILER BASIC

BASIC CONCEPTS

TRS-80™

INTRODUCTION

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

IT.

III.

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

Overview -- Elements of a Program
Program

Statements

Expressions

Tests

U0w¥

e o

A.

How
A.

BASIC Handles Data
Ways of Representing Data

1.
2.

How
1.

How
How
How
1.
2.
3.

Constants

Variables

a. Variable Names

b. Reserved Words

c. Simple and Subscripted Variables
BASIC Stores Data

Numeric Data

a. Integers

b. Real Numbers

String Data

BASIC Classifies Constants
BASIC Classifies Variables
BASIC Converts Numeric Data
Real Number to Integer Type
Integer to Real Number Type
Illegal Conversions

BASIC Performs Operations on Data
Operators

1.

Numeric

a. Addition

b. Subtraction

c. Multiplication
d. Division

e. 1Integer Division
f. Exponentiation
g. Modulus Arithmetic
String

Test Operators

a. Relational

Radio fhaek

PAGE 3 -1

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
b. Logical
B. Functions
IV. Syntax of Expressions

A. Simple Expression
B. Complex Expression
C. Function

Radio fhaek

PAGE 3 - 2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

OVERVIEW -- ELEMENTS OF A PROGRAM

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from 0 to 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.)

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line BASIC colon between BASIC
number statement statements statement

100 PRINT : PRINT "THIS IS THE FIRST PRINT LINE"
110 FOR I = 1 TO 1000: NEXT I : 'DELAY LOOP
120 PRINT STRINGS (28,"-");

130 PRINT "THIS IS THE NEXT"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some

statements, such as GOTO, ON...GOTO, GOSUB, change this
sequence.

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

Radio fhaek

PAGE 3 - 3

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:

(L +5.2) /3 D

5 % B 3.7682

ABS(X) + RND(O0) SIN(3 + E)
2. String expressions, which are composed of character data.

Examples:

AS "STRING"

"STRING" & "DATA" MOS & "DATA"
SEGS$(AS$,2,5) & SEGS("MAN",1,2) MS & AS & BS

Functions

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -- as part of a statement.

Radie fhaek

PAGE 3 - 4

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are some of BASIC's functions:

INT

ABS
STRINGS
SEGS

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A =1
AS$ > BS

2. Logical tests, which test the logical relationship
between relations. Examples:

AS$ = "YES" AND B$ = "NO"
C >5O0RM<KBORO> 2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you
enough information if you are in a hurry to begin using Compiler
BASIC.

Radie fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC HANDLES DATA

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DATA

BASIC recognizes data in two forms -- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as "constants" -- values which
are not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,
1 PLUS 1 EQUALS
and one numeric constant
2

In these examples, the constants are "input" to the PRINT
statement. They tell PRINT what data to print on the Display.

Radie fhaek

PAGE 3 - 6

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are more examples of constants:

3.14159 "L. O. SMITH"
1.775E+3 "0123456789ABCDEF"
"NAME TITLE" -123.45E-8
57 "AGE"
Variables
A variable is a place in memory —— a sort of box or pigeonhole

-- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing quantities. For example, in the statement:

A$ = "OCCUPATION"

The variable AS now contains the data OCCUPATION. However, if
this statement appeared later in the program:

AS$ = "FINANCE"

The variable AS$ would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names
In BASIC, variables are represented by names. Variable names
must begin with a letter, A through Z. This letter may be upper
or lower case and may be followed by up to 5 characters --
either digits or letters -- for a total of 6 characters.
For example

AMOUNT A Al12345 Al B1AB2 aB

are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

Radio fhaek

PAGE 3 - 7

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

For example:

SUPERN SUPERNUM SUPERNUMERARY
are all treated as the same variable by BASIC.
Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the operator NOT as variable names. For example:

ABS SIN LEN ASC
cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable

names. For example, ABS1 and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET = 10
is okay, but
LET = 10

is not.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of data
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A(0) A(l) A(2) A(3) A(4)

You may use each of these elements to store a separate data
item, such as:

A

WN O
Nt N Nt gt
I
S~ U
[] ° e L
W N W

(
(
(
(

g

Radie fhaek

PAGE 3 - 8

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two
dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0)
X(1,0)

8.6 = 3.
7.3 = 32.6

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
withs:

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(1,1)
to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted

variables.

Note: See DIM for more information on arrays.

Radie fhaek

PAGE 3 - 9

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory
it will consume and the speed in which BASIC can process it.

Numeric Data

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:
1 32000 -2 500 -12345
can all be stored as integers.

Note: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (It prints the first 6 digits,
rounding off the last digit.)

This is the range of real numbers:

[-1 * 10 ** -64, -1 * 10 ** 3], or
[1 * 10 ** -64, 1 * 10 ** 53]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

Radio fhaek

PAGE 3 - 10

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Note: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix.)

For example, the data constant:

Jack Brown, Age 38
can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one

byte of storage. BASIC would store the above string constant
internally as:

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

Radio fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC CLASSIFIES CONSTANTS

When BASIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

If the value is enclosed in double-quotes, it is a string. For
example:

IIYES L1}

"3331 Waverly Way"

"1234567890"

the values in quotes are automatically classified as strings.

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&0 &7FCO &FFFF

are all hexadecimal numbers. Hexadecimal numbers are actually
stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

If the value is not in quotes, it is a number. (An exception to
this rule is during data input by an operator. See INPUT, LINE
INPUT, INKEYS$, and INPUTS.)

For example:
123001
1
-7.3214E+6

are all numeric data.

Radio fhaek

PAGE 3 - 12

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Whole numbers in the range of -32768 to 32767 are integers. For
example:

12350

-12
10012

are integer constants.

If the number contains a decimal point or is outside the integer
range defined in rule 3 above, it is real. Also, if it contains
the letter E, it is real.
Note: Exponents are printed with the letter E. The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7
Represents the value 10000000, or 1 * 10 ** 7.

1. E-8

Represents the value .00000001 or 1 * 10 ** -8,

Radio fhaek

PAGE 3 - 13

MODEL I/IITI COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types
and stores them in 8 bytes. For example:

AB AMOUNT XY L

are all real number variables initially. If this is the first
line of your program:

Lp = 1.2

BASIC will classify LP as a real number variable.

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING
INTEGER
REAL

The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

Radie fhaek

PAGE 3 - 14

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

instructs BASIC to classify all variable names as string.

STRING L

’

instructs BASIC to classify only those variable names beginning
with the letter L as string.

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN"

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space.

e gﬁ1]f7f1; ‘f1f 3317 _f?f,~ ‘[l: T ‘; ’
e)

255 bytes

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this
program:

10 STRING*4 L
20 L = "JOHN"
30 LAST = "ALEXANDER"

L and LAST will each contain 4 bytes of string data:

o RN ALER

4 bytes ———— ———— 4 bytes

If you want to store all variable names beginning with the

Radie fhaek

PAGE 3 - 15

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

letter L as string variables except for the variable LAST, you
can use the DIM statement:

10 STRING*4 L
20 DIM LASTS9
30 L = "JOHAN"
40 LAST = "ALEXANDER"

This program stores the variable L in 4 bytes and LAST in 9
bytes. =T I‘ —

9 bytes

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example:

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER
instructs BASIC to classify all variable names as integers.
In the present form of BASIC, all integer variables are stored
in 2 bytes.
The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

Radie fhaek

PAGE 3 - 16

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

20 REAL X-Z

instructs BASIC to classify all variable names, except for those
beginning with X, Y, or Z, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements

You cannot introduce a definition statement after an executable
statement. An executable statement is a statement other than a
definition statement. For example:

10 L = 10
20 STRING

produces an error, since STRING may not follow the executable
statement L = 10. However,

10 STRING
20 L = 10

is correct.

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

S String
% Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MONS FINANCES CHARTS

will all be classified as string variable names, regardless of

Radio Sfhaek

PAGE 3 - 17

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

what attributes have been assigned to the letters S, M, F, and
C.

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

I% LM% NUM% COUNTERS®

will all be classified as integer variable names, regardless of
what attributes have been assigned to the letters I, L, N, and
C.

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR # ER# MP235# LITE#

will all be classified as real number variables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB = "NEW"

The statement:
30 AB% =1

produces an error, since AB has already been classified as a
string variable and cannot be re-classified. However:

30 AR% =1

is accepted, since the type declaration tag (%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

B$ = "DATA"

You may refer to the string variable B$ as simply B. B will
retain the classification of a string variable throughout the
rest of the program.

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

Radie Shaek

PAGE 3 - 18

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

name. This makes the program more consistent and simplifies
editing.)

Radio Sfhaek

PAGE 3 - 19

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A =5

or a real number constant to an integer variable, such as:

To do this, BASIC must first convert the data constant. This is
how it is done:

Real Number to Integer Type

BASIC truncates (ignores) the fractional part of the original
value. The truncated value must be in the range of [-32768,
32767 1.
Examples
A% = -10.5
Assigns A% the value -10.
A% = 32767.9
Assigns A% the value 32767.
A% = 2.5E+3
Assigns A% the value 2500
A% = -123.45678901234
Assigns A% the value -123.

A% = 60000

Prints an integer overflow warning and assigns A% the value
32767. (32767 is the highest number that can be stored as an
integer).

Radie fhaek

PAGE 3 - 20

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer to Real Number Type

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much

storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:
A=1

Stores 1.0000000000000 in A.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

A$ = 1234
A% = "1234"
are illegal. (Use STR$ and VAL to accomplish such conversions).

Radie fhaek

PAGE 3 - 21

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC PERFORMS OPERATIONS ON DATA

———— o — - —_— —— ——— — " — T — T ———— —— " — " — o ————

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS

An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as

operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand
This is the form for a unary operation.

Examples:
6 + 2

The addition operator + connects or relates its two operands, 6
and 2, to produce the result 8.

Radie fhaek

PAGE 3 - 22

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

-5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6+ 2
PRINT -5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they involve more bytes.

There are nine different numeric operators. Two of them, sign +
and sign -, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.
For example, in the statement:

PRINT =77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

Radio fhaek

PAGE 3 - 23

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

take two operands. These operators are:

D D) D W - D —— S) D W W R O I N — o " — - — — o - —— - — — S Wi St T o S > - . ——— —

+ Addition

- Subtraction

* Multiplication

/ Division

! Integer division (keyboard character <SHFT 1>
k% Exponentiation

MOD Modulus arithmetic

O W G s D) 23— - -)) 0 — - V—— S T) i} — D — s o —— - ——_ > a - o

Addition
The + operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Otherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition. .
Note: See the section on How BASIC Converts Data (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.
Examples:

PRINT 2 + 3
Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3
Real number addition. (The integer 3 is converted to a real
number.)
Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

Radie fhaek

PAGE 3 - 24

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

PRINT 33 - 11
Integer subtraction.
PRINT 12.345 - 11

Real number subtraction.

Multiplication
The * operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication.
Examples:

PRINT 33 * 11
Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division
The / symbol indicates ordinary division. Division is always
with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.
Examples:

PRINT 3/4
Real number division.

PRINT 3 / 1.2

Real number division.

Radie fhaek

PAGE 3 - 25

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Integer Division
The integer division operator ! is input by pressing <SHIFT 1>.
It converts its operands into integer type, then performs
integer division. 1In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
outside the range [-32768,32767], an error will occur.)
For example:
PRINT 7 ! 3
prints the value 2, since 7 divided by 3 equals 2 remainder 1.
PRINT -7 ! 3

prints -2.

Exponentiation

The symbol ** denotes exponentiation. It converts both its
operands to real numbers and returns a real number result.

For example:
PRINT 6 ** _3

prints 6 to the .3 power.

Modulus Arithmetic

The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24-hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.

MOD requires two operands, for example:
A MOD B

B is the modulus (the counting base) and A is the number to be

Radie fhaek

PAGE 3 - 26

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

converted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. In this sense, it is the
converse of !, which returns the whole number quotient and
ignores the remainder.)
MOD converts both operands to integer type before performing the
operation. If either operand is outside the range
[-32768,32767], an error will occur.
Examples:

PRINT 155 MOD 15

Prints 5, since 155!15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12
Prints 7, since 79!12 equals 6 with remainder 7.
PRINT -79 MOD 12
Prints -7.
10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A$%
30 PRINT A; "="; A ! 90; ™ * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

- — ——— —— — ———

BASIC has a string operator (&) which allows you to concatenate
(link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

PRINT "CATS " & "LOVE " & "MICE"

prints:

Radio fhaek

PAGE 3 - 27

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

You may use test operators in IF...THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test- operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are <, >, and =; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relations:

2

NN
v

AANNAN

5
5
2

Radio fhaek

PAGE 3 - 28

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

v

5 2

7 7

Relational operators may only be used in an IF...THEN statement.
For example

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. 1If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if X is larger than 100, then
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence

= Precedes or has the same precedence
= Follows or has the same precedence

BASIC compares the string expressions on a character-by-
character basis. When it finds a non-matching character, it
checks to see which character has the lower ASCII code. The
character with the lower ASCII code is the smaller (precedent)
of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples
"A w < IIBII

The ASCII code for A is decimal 65; for B it's 66.
"CODE™ < "CcooL"

The ASCII code for O is 79; for D it's 68.

Radie Shaek

PAGE 3 - 29

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL" < "TRAILER"

Leading and trailing blanks are significant. For example:
W A" < "A L]

ASCII for the space character is 32; for A it's 65.
"z-80" < "z-80a"

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF...THEN statements. These are examples of how
they might be used:

IF AS$ < B$ THEN 50

If string AS$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT AS

If R$ equals YES then the message stored as A$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IF A=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A=l and
C=2.

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

Radie fhaek

PAGE 3 - 30

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how to use the logical operators:
AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical false. For example:

IF A = B AND B < 0 THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME = OVER OR TIME >= LATE THEN 500

XOR ("Exclusive OR")

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF AS = "YES" XOR B$ = "YES" THEN PRINT "ONLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(AS$ < "M") THEN PRINT A$; "DOES NOT PRECEDE M"

Hierarchy of Operators

When your expressions have multiple operators BASIC performs the
operations according to a well-defined hierarchy so that results
are always predictable.

Parentheses

Radie fhaek

PAGE 3 - 31

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression: ,

8 - (3-2)

is evaluated like this:

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))
is evaluated like this:

3 -4=-1
2

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT:

Numerical operations:

¥ %

+, - (unary sign operations -- not addition or
subtraction)

*, /

!

MOD

+, -

Ko >, =, <=, >=, <>

NOT

AND

OR

Radie fhaek

PAGE 3 - 32

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

XOR

String operations:

&

<, >, =, <=, >=, <>
NOT

AND

OR

XOR

For example, in the line:
X * X + 5*%2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. 1If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 5%*%2.8)
or
X * (X + 5)**%2.8
Here's another example:
IF X=0OR Y > 0 AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X =0 OR ((Y>0) AND (%2=1)) THEN 255

Radio fhaek

PAGE 3 - 33

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-8

FUNCTIONS

A function is a built-in sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data item. The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC routine would.

A function consists of a keyword followed by the data that you
specify. This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.
If the data required is termed 'number' you may insert any
numerical expression. If it is termed °'string' you may insert
either a string constant or a string variable.
Examples:

SOQR(A + 6)
Tells BASIC to compute the square root of A + 6.

SEGS (AS, 3, 2)

Tells BASIC to return a substring of the string A$, starting
with the third character, with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement.
For example

A = SQR(7)
Assigns A the data returned as the square root of 7.

PRINT SEGS (AS$, 3, 2)

Prints the substring of A$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

Radsie fhaek

PAGE 3 - 34

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

SYNTAX OF EXPRESSIONS

Understanding the syntax of expressions will help you put
together powerful statements -- instead of using many short
ones.

As we have stated before, an expression is actually data. This
is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants
Variables
Operators
Functions

Expressions may be either simple or complex:

A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be
preceded by an optional + or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

AS STRINGS (20, AS) "WORD" "M"

are all simple string expressions since they only consist of one
string term.

Radie fhaek

PAGE 3 - 35

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Here's how a simple expression or a term is formed:

A COMPLEX EXPRESSION consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3.2-Y A/3 * (LOG(Y)) ABS(B) + LOG(2)
are all examples of complex numeric expressions.
AS$ & BS$ "Z" & Z$ STRINGS$ (10, "A") & "M"
are all examples of complex string expressions.

This is how a complex numeric expression is formed:

Radie fhaek

PAGE 3 - 36

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how a complex string expression is formed:

Most FUNCTIONS, except functions returning system information,
require that you input either or both of the following kinds of

data:

one Oor more numeric expressions
one or more string constants or string variables

This is how a function is formed:

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

Radie Shaek

PAGE 3 - 37

TRS-80™

kkhkhkkkhkhkhkhkkhhhhhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhikk

Chapter 4

* %
* *
* *
* BUILDING DATA FILES *
* *
* *

kkkhkkkhkhkhkhkhkhkhhhhkhhkhkkhhkkhhkhhhhhhkhkhhkhhhhkk

Radie Sfhaek

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INTRODUCTION

This chapter explains how to write a BASIC program which will
store data files on Model I/III diskettes. The Overview
explains the different methods-you can use to store data. The
next sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

I. Overview
A. Introduction to Data Files
B. Types of Records
1. Fixed Length Records
2. Variable Length Records)
C. Ways of Accessing Records -
1. Sequential Access
2. Direct Access
3. Indexed Access (ISAM)
D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

IT. Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/Output
C. Using Binary Input/Output

IIT. Building a Direct Access File
A. Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

IV. Building an Indexed Access File

Radio fhaek

PAGE 4 - 1

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

OVERVIEW

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from one to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains 50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. 1If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE" command. (See the Model I/III Disk Operating
System.)

This overview covers:

1. the types of records you can build

2. the different ways you can access these records,

3. the methods you can use to input and output data to
these records.

Radio fhaek

PAGE 4 - 2

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
you open the file for use. Once set, the length may not be
changed unless you are over—-writing the file with new data.

This is a picture of an FLR file containing three records:

RECORD 1 RECORD 2 RECORD 3

The advantage of using FLRs is that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of
empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

———— - ———————————— " ———o—_— —— o

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

Radie fhaek

PAGE 4 - 3

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted

in a VLR file; each new record begins where the data in the last
record ended.

Radio fhaek

PAGE 4 - 4

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:.

1. sequential access
2. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

A sequential access file is normally made up of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3, ... , the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build, but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,
make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1l. Files which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4. Files where the maximum record length cannot be
determined in advance.

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Storage Format

In a variable length sequential access file, the first byte in
each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Building a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing list. :

2. Files which need to be continually updated such as
inventory data.
Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

Radie fhaek

PAGE 4 - 6

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

The first byte of the record contains the actual number of bytes
of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it contains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount of space on disk as all the other records. This
is what record 2 would look like:

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs"™ the data by assigning all

the records new record numbers; thereby eliminating the space
being consumed by deleted records.

s

0

0

Indexed Access (ISAM)

O T v D) D e e D WD S e s o 1D

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the record. Rather than
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string.

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her

PAGE 4 - 7

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section.)

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and
deleted.

Radie fhaek

PAGE 4 - 8

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

SEQUENTIAL ACCESS

BEGINNING
FILE END

RECORD 2 RECORD 3

DIRECT ACCESS

3

RECORD 2 RECORD 3

INDEXED ACCESS

RECORD 2

Radie fhaek

PAGE 4 - 9

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will be stored in the record
2. how the data will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields as you can
fit in the record.

BASIC offers three methods of inputting and outputting data to a
record:

l. Stream
2. Formatted
3. Binary

Each of these methods may be used with any type of records and
with any type of access method.

The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space on the diskette.

The binary method stores numeric data the same way it is stored
in memory: integers in two bytes and real numbers in a maximum
of nine bytes. For instance, the integer -23456 would consume
six bytes of disk space with stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator is
necessary.

Note: 1In the following illustrations of stored records, only
the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

Radie fhaek

PAGE 4 - 10

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

(sequential, direct, or indexed).

Stream Input/Output

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, and the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

1. first name
2. last name
3 ID number

And this was the data for the first two records:

First name Last name ID

(FIRSTS) (LASTS) (ID)
record 1 J DAY 42
record 2 JANE MILLER 2

You would input the data simply by using a comma to delimit the
end of one field and the beginning of the next field:

FIRSTS$, LASTS$, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

Notice that each new field of data requires one extra byte of
disk space for the comma.

Radie fhaek

PAGE 4 - 11

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the number. However
if you output the ID as a string (IDS$):

FIRSTS, LASTS, IDS$

no leading blank would be required in storing the number:

'J','D'AIYI,IZL 2 |

Stream input/output is best suited for VLRs, since the fields in
each record may differ in length. However, the stream method
may also be used with FLRs.

Formatted Input/Output

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the diskette. This allows
you to use the image to control exactly how and where each field
of data will be stored on the disk.

For example, you could output the same data as above using the
formatted method with this image:

<HFH<HEHH<H

to format four characters for the first field, five for the
second, and two for the third, with each field left justified.
This 1s how the data would be stored:

Radie fhaek

PAGE 4 - 12

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number.

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating them.

Binary Input/Output

o s o —————— v ————— -

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data
Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation.

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.

For example, the integers 22, 333, 4444 would be stored as
follows:

——

6

22 333

4444)

The first byte tells how many bytes of data are in the three
following fields. Notice how each integer requires two bytes of
storage. No extra bytes are required to separate each field.

Radio fhaek

PAGE 4 - 13

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80

The real numbers 2000 and 3333 would be stored in this format:

7 2 |44 2 3 44| 33| 33
FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes long. The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE" would be stored in a record
in this form:

A

4

I

E

12

6

B

I

N

R

Y

F

L

Notice that each field contains a leading length byte.

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing

sales data or accounting data would be best stored using the
binary method.

Radie Shaek

PAGE 4 - 14

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING A SEQUENTIAL ACCESS FILE

As we discussed in the overview of this chapter, you have a

choice of three methods you may use in building a sequential
access file: -

1. Stream method
2. Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you do not have to format the

length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

Radie Shaek

PAGE 4 - 15

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80

4. wupdate the file < Gk

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN.

2., Print a data record to the disk file with PRINT #.

3. Repeat step 2 until your program has printed all the
records to the disk file, and then

4., Close the file with CLOSE.

Here is a sample program, along with a sample run of the
program, which builds the file using these four steps:

1@ REM ®EE DEMO OF STREAM OUTPUT TO A SEQUENTIAL FILE ##%%
20 REM

A@ OPEN #1s "ITEM/DAT"s MODE=Ws TYPE=S

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
30 TNPUT NO%: NAME$s DESH

HB PRINT #135 NOd%: NAME$: DESS

7@ PRINT "IS THERE ANOTHER ITEM (Y/MN)7"

Bl INPUT ANDWERS

9@ IF ANSWERS <> "N" THEN 4@ ELSE CLOSE #1
*RUN
INPUT (1) ITEM NO. (2 NAME (3) DESCRIPTION OF ITEM
7111
7 PAPER

7 LEGAL PAD 8 1/2 X 11 5@ SHEETS
I8 THERE ANOTHER ITEM (Y/N)?

Y

INFUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 PEN

7 BLUE INK BaALL POINT MEDIUM INK

I6 THERE ANOTHER ITEM (Y/N)7

7 N

Line 30 opens the file with the OPEN statement. (See OPEN):
- it references it as file unit #1 (You may have several

Radie fhaek

PAGE 4 - 16

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

files open at the same time as demonstrated later in this
section.)

- it names it with the file specification of ITEM/DAT

- it sets the MODE to W since we are writing data to the
file.

- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NO$, NAMES and DES$. Notice that the PRINT #
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

To read all the data records you have put in your file, you need
to have your program do these five things:

1. Open the disk file with OPEN.

2. Read in a data record with INPUT #.

3. Use EOF to see if you have reached the end of the file
yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

18 REM ¥ DEMO OF STREAM INPUT FROM A BEQUENTIAL FILE *%%

2@ REM
3 OFEN #1s "ITEM/DAT"s MODE=Rs TYPE=SH
4@ TNPUT $13 NO%s NOME$s DEGS

5@ IF EOF(#1) <> @ THEN 90

HB FRINT ¢ PRINT "ITEM NUMBER = "3NO%: "NAME = "j;NAMES
7@ PRINT "DESCRIPTION OF THE ITEM = "3 DES%

BB GOTO 40

90 CLOSE #1

Radie Shaek

PAGE 4 - 17

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

ITEM NUMBER = 111 NAME = PAPER

DESCRIPTION OF THE ITEM : LEGAL PAD 8 1/3 X 11 5@ SHEETS
ITEM NUMBER = ZZZ NAME = PEN

DESCRIPTION OF THE ITEM : BLUE INK BALL POINT MEDIUM INK

STOP LINE 9@
¥*

Line 30 opens the file:

- again, it is file unit #1

- it names ITEM/DAT as the file to be opened (the file
that was created above)

- it sets the MODE to R since we are reading data from the
file

- it sets the TYPE to S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NO$, the second to NAMES, and the
third to DESS.

Line 50 checks to see if you have reached the end of the file
yet. TIf you have, it jumps to line 90 where the file is closed.

Line 80 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".

The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

Radie fhaek

PAGE 4 - 18

MODEL I/III COMPILER BASIC BUILDING DATA FILES

named ITEM/DAT.

13 REM ##¥ DEMO OF ADDING TO A SEQUENTIAL FILE #x%

2B REM

3@ OPEN #1s "ITEM/DAT"s MODE=Es TYPE=H

4 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®

58 INPUT NO%s NAME®: DEE$

6B PRINT #1355 NO$s NeaME$s DEDLS

7@ PRINT "IS THERE ANOTHER ITEM (Y/N)7"
8B INPUT ANGWERS

9@ IF ANBWER$ <> "N" THEN 40 ELSE CLOBE #1
*+RUN
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 333

7 TYPEWRITER

7 TaN ELECTRIC PORTABLE SELECTRIC
I8 THERE ANOTHER ITEM (Y/N)7

7 M

STOP LINE %@

Updating the File

As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps you need to follow:

1. Open the file you want to update (file #1) with OPEN.

2. Open a second file with OPEN to write your updated
records to (file #2).

3. Read in a data record with INPUT # from file #1.

4. Use EOF to see if you have reached the end of file #1.
. Use PRINT # to print the updated record to file #2.
Repeat steps 3, 4, and 5 until you reach the end of
and then
Close file #1 with CLOSE.
Kill file #1.
Close file #2 with CLOSE.

| i
<

file

°

WO d3xk=0U0

Here is a sample program which updates a sequential access file
using these nine steps:

13 REM ##% DEMO OF UPDATING A SBEQUENTIAL FILE ##%
20 REM

36 OPEN #1: "ITEM/DAT"s MODE=Rs TYPE=GS

4@ OPEN #2Zs "NEWITEM/DAT"s MODE=W, TYPE=S

58 INPUT #13 NO%s NAME%s DES$

6B IF EOF(#H1) = —1 THEN 168
70 PRINT ¢ PRINT "ITEM NUMBER = "3$NO%$s "NAME = " 3$NAMES$
®
Radie fhaek

PAGE 4 - 19

MODEL I/III COMPILER BASIC BUILDING DATA FILES

ap OULE!

80 PRINT "DESCRIPTION OF THE ITEM : "3;DES$

0 PRINT = PRINT "DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)";j
180 INPUT ANSWERS

110 IF ANSWER$ = "N" THEN 140

120 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
130 INPUT NO%s NAME$:s DESH

140 PRINT #23 NO%s NAME$: DESS

158 GOTO 50

160 CLLOSE #1

170 KILL "ITEM/DAT"

180 CLOSE #2

ITTEM NUMBER = 111 NAME = FPAPER
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/2 X 11 50 BHEETS

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)?7 N

ITEM NUMBER = 223 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BaLL POINT MEDIUM INK

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 Y
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
7 OREE

7 FEN
7 BLACK INK BaALL POINT FINE LINE

TTEM NUMBER = 333 NAME = TYPEWRITER
DESCRIPTION OF THE ITEM * TAN ELECTRIC PORTABLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

Line 30 opens the file to be updated:

- it references the file as file #1

- it names ITEM/DAT as the file to be opened

- it sets the MODE to R, since we will be reading data
records from the file

- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2

- it names this new file "NEWITEM/DAT"

- it sets the MODE to W, since we will be writing the
updated data records to this file

- it sets the TYPE to S

Radie fhaek

PAGE 4 - 20

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

o
P Al

Line 50 INPUTs (reads) one data record from file #1.

Line 60 checks to see if we have reached the end of file #1. 1If
so, it sends program control to lines 160-180 where the two
files are closed.

Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out~of ~date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

Radie fhaek

PAGE 4 - 21

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™ -

(s
SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

T f =

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT # with PRINT
USING # and INPUT # with INPUT USING #.

Sample programs:

i@ REM *#¥% DEMO OF FORMATTED OUTPUT TO A& SEQUENTIAL FILE #%#%
2@ REM

3B OPEN #1s "ITEM/DAT"s MODE=W: TYPE=S

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
5@ INPUT NO%s NAME$s DES$

&H@ PRINT USING #1135 20@s NO$%s NAME®s DES$

7@ PRINT "IS THERE ANOTHER ITEM (Y/N)7"

80 INPUT ANSWERS®

QA IF ANSWERS$ <> "N" THEN 40 EL.SE CLOSE #1
2O 5 S HEEE R
#RUN
INPUT (1) ITEM NO. () NAME (3) DESCRIPTION OF ITEM
7 111
7 PAPER

7 LEGAL PAD 8 172 X 11 58 GHEETS

I8 THERE ANOTHER ITEM (Y/N)7?

7Y

INPUT (1) ITEM NO. (2) NaAME (3) DESCRIPTION OF ITEM
7 22z

7 PEN

7 BLUE INK BALL POINT MEDIUM POINT

I8 THERE ANOTHER ITEM (Y/N)7

7 N

Radie Shaek

PAGE 4 - 22

MODEL I/III COMPILER BASIC BUILDING DATA FILES

1686
ERUN

ITEM NUMBER = 111

TRS-80™
e d Y
18 REM #¥% DEMO OF FORMATTED INPUT FROM A SEQUENTIAL FILE ®x%
28 REM
30 OFPEN #1s "ITEM/DAT"s MODE=R: TYPE=H
48 INPUT USINMNG #1353 106 NO%. MNaME$s DESS
5@ IF EOF(#1) <> @ THEM 9@
6B PRINT & PRINT "ITEM NUMBER = "3MNO%s "NMaME = " 3NaMES
780 PRINT "DESCRIPTION OF THE ITEM @ "3 DES%
2@ GOTO 48
9@ CLOSE #1

O R R

E = PAPER

NAME
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/3

ITEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BALL P

PAGE 4 - 23

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ -

. Ly, L
e G s U
P

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures
as the stream input/output method, except replace PRINT # with
WRITE and INPUT # with READ.

Sample Programs:

1 REM *¥¥ DEMO OF BINARY OQUTPUT TO A SEQUENTIAL FILE #%%
30 OPEN #1. "SALES/DAT"s MODE=Ws TYPE=S

20 REM

4@ PRINT "INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES

5@ INPUT NOZs JANs FEBs MAR
&0 WRITE #1535 NOZs JANs FEBEs MAR
780 PRINT "IS THERE ANOTHER ITEM (Y/N)"3
80 INPUT ANSWERS
2@ IF ANSWER® <> "N" THEN 40 ELSE CLOSE #i
*RUN
INPUT (1) ITEM NO. (2) JAN SALES (3) FEBE SALES (4) MAR SALES
7 111
7 1000
7 200G
7 3000
I& THERE ANOTHER ITEM (Y/ND7 Y
INPUT (1) ITEM NO. (2) JAN SALES (3) FEBE SALES (4) MAR SALES

Yy
7T OR2RR

7 1500

7 2000

7 2500 :

IS THERE ANOTHER ITEM (Y/N)7 N

STOP LINE 90
*

Radio fhaek

PAGE 4 - 24

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™
",

18 REM *#% DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE *¥%
2@ REM

3@ OPEN #1. "SALES/DAT"s MODE=Rs TYPE=S

4@ PRINT "ITEM NO"s "JAN SALES"s "FEB SALES"s "MAR SALES®

5@ READ #1353 NOXs JANs FEBs MAR

6B IF EOF(#1) <x @ THEN 20

70 PRINT NOZs JANs FEBs MAR

8@ GOTO 5@

90 CLOSE #1

#RUN
ITEM NO JAN SaLES FEB SALES MAR SALES
111 100@ pes 170 3000

222 1500 2000 2500
STOP LINE 90
L3

Radio fhaek

PAGE 4 - 25

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-E

BUILDING A DIRECT ACCESS FILE

As with sequential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method first.

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/OUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the OPEN
statement

- you must assign each record a record number

Radie fhaek

PAGE 4 - 26

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

/ PIRE T folk

These are the procedures to use:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT USING
#, specifying its record number.

3. Repeat step 2 until you your program has output all
records desired to the disk file, and

4. Close the file with CLOSE.

Here is a sample program following these procedures:

16 REM ®¥a% DEMO OF FORMATTED OUTPUT T0O A DIRECT FILE #¥%#%
28 REM

2@ OPEN #1s "LIST/DAT"s: MODE=Ws TYPE=Ds LENGTH=3Z

4 X =1

3@ PRINT @ INPUT PROMPT="LAST NAME 7"3 LNAMES

32 INPUT PROMPT="FIRST NaME 7"3 FN&AMES

534 INPUT PROMPT="ADDRESS 7"35 ADDG

7@ PRINT USING #1s KEY=X3 110y LNAMESs FNAMES: ADDS

8@ INPUT PROMPT="I& THERE ANOTHER ADDRESS (Y/N) 7": ANSWERS

10 IF ANSWER$ = "N" THENM CLOSE #1 ELSE X = X + 1 @ GOTO 5@
118 5 D R RS SR
*FHUN

LAST NAME 7HARRISON

FIRST NaMiE 7PATRICIA

ADDRESS 71513 MORTH MOCKINGRIRD LANE
I8 THERE ANOTHER ADDRESS (Y/N) 7Y

LAST NAME 7.JOHNSON

FIRST MAME 7GEORGE

ADDRESS 71811 SOUTH HAMPTON

IS5 THERE ANOTHER ADDRESS (Y/N) 7N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. In this program, each
record will be divided into three fields. The < character marks
the beginning of each field:

the first field has 10 characters;

the second, 7;

the third, 15.
for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

Radie fhaek

PAGE 4 - 27

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

— 3 ,”“} STt
/DI ReECST 4
{ :

- it references the file as file unit #1

- it names the file "LIST/DAT"

- it sets the MODE to W (write)

- it sets the TYPE to D (direct)

~ it sets the LENGTH (record length) to 32 characters in
each record.

Line 70 outputs a record to the disk file using the format set
on line 110. Notice that in direct access, this PRINT USING #
statement must specify a KEY (record number) for each record.

Line 100:

- closes the file if the operator does not want to output
any more records, or

-~ increments the record number by 1 and sends the program
back to print the next record to the disk file.

Reading the File (Input from the File)

G — T D S — —— e D e S D S D D D S W O WD S D e <

To read every record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, you must specify the record length
- in the INPUT USING # statement, you must specify the KEY
(record number) you want to input from the file

These are the procedures:

1. Open the disk file with OPEN, specifying the record
length.

2. Read in a data record with PRINT USING #, specifying
the record number.

3. Use EOF to see if you have reached the end of the file
vet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a sample program following these procedures:

1% REM ##% DEMO OF FORMATTED INPUT FROM A DIRECT FILE ###%
2@ REM =

3@ OPEN #1s "LIST/DAT"a: MODE=Rs TYPE=D: LENGTH=32

4@ X = 1

&H@ INPUT USING $#1. KEY=Xs 130 LNAME%: FNAME#%: ADD$

&5 IF EOF(H#LY <= @ THEN 186

Radie Shaek

PAGE 4 - 28

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

7@ PRINT @ PRINT "RECORD #"3 X

80 PRINT LNAMES:;"s " 3FMAME®Ss s ADDS
@ X = X + 1 @ GOTO &@

106 CLOSE #1

Réaﬁ $ORHRHEER RS RS SRS EEE
#*

(prager besEs:s)

RECORD # 1
HARRISON s PATRICI
1513 NORTH MOCK

RECORD # 2

JOHNSON s GEORGE

1811 SOUTH HAMP
Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
it references it as file unit #1
- it names it LIST/DAT
-~ it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record # X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAMES, FNAMES$, and ADDS.

Line 65 checks to see if you have reached the end of the file
yet. If so, it jumps to line 100 where the file is closed.

Line 90 increments the record # by one and sends the program
back to input the next record from disk.

Updating and Adding to the File

———— —— o —————— " — - —— _— ——— . ——

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length.
2. By specifying the record number, you may then do one of
the following:
a. input the record from the disk file by
using INPUT USING #
b. delete the record from disk file with
DELETE #, or
c. output new data to the disk file, for

Radie Shaek

PAGE 4 - 29

MODEL I/III COMPILER BASIC BUILDING DATA FILES

that record number with PRINT USING #
3. Repeat step 2 until you have finished updating the
file, and then
4. Close the file with CLOSE.

Here is a sample program updating a direct access file:

1@ SEE #¥% DEMO OF UPDATING A FORMATTED DIRECT FILE ##%
2B OPEN #1s "LIST/DAT"s MODE=Us TYPE=Ds LENGTH=3Z

4@ PRINT @ PRINT " (1) DISPLAY RECORD" @ PRINT "¢2) DELETE RECORD®
5@ PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE"

HO O INPUT PROMPT="SELECT ONE OF THE ABOVE "3 &

7@ INPUT PROMPT="RECORD NO (@ IF CLOSING FILE) ?"3 R

B@ ON & GOTO 11@. 160, 200, 270

2@ REM

18& REM
11@ REM #¥¥% (1) DISPLAY RECORD ROUTINE %%

128 INPUT USING #1y KEY=R3; 29@0. LNAME$: FNAME$: ADD%
13@ PRINT LNAME®:5"s"5FNAME$s sy :ADDE @ GOTO 4@
140 REM

158 REM

160 REM *#%% (2) DELETE RECORD ROUTINE #®%

178 DELETE #1s KEY=R: GOTO 4@

180 REM

198 REM
200 REM #%% (3) ADD/CHAMGE RECORD ROUTINE %%
21@ INPUT PROMPT="LABT NMaME 7": L.NAMES
220 INPUT PROMPT="FIRST NAME 7"3 FNAMES$
2R@ INPUT PROMPT="ADDRESS 7"35 ADD$
248 PRINT USING #1s RKEY=R3; 290 LNAME$s FNAME$s ADDS GOTO 46
250 REM
2668 REM
270 REM #¥% (4) CLOSE FILE #%x

280 CLOSE #1
2@ 5 AR R R SRR R

Here is a sample of what might happen when this program is RUN:

*#RUN

(1) DISPLAY RECORD
(2) DELETE RECORD
(3) ADD/CHANGE
(4) CLOSE FILE

Radie fhaek

PAGE 4 - 30

MODEL

I/II1I COMPILER BASIC

SELECT ONE OF THE AROVE :3
RECORD NO (@ IF CLOSING FILE) 73
LAST NAME 7ALEXANDER
FIRST NAME 7MARIA
ADDRESS 73333 ELK GROVE

(1)
()
(3)
(4)

DISPLAY RECORD
DEL.LETE RECORD
ADD/ CHANGE
CLOSE FILE

SELECT ONE OF THE AROVE =1
RECORD NO (@ IF CLOSING FILE) 73
AHLEXANDER s MARIA
3333 ELK GROVE

(1)
()
(3)
(4)

DISPLAY RECORD
DELETE RECORD
ADD/ CHANGE
CLOSE FILE

SELECT ONE OF THE ABOVE :4
RECORD NO (@ IF CLOSING FILE) 7@

Line
build

Line

Line

Line
Routi

290 is the image line.
ing the file.

30 opens the file:

TRS-80™

BUILDING DATA FILES

This is format which was used when

it references it as file #1

- it names it LIST/DAT

- it sets the MODE to U
- it sets the TYPE to D
- it sets the LENGTH to

70 asks the operator to

80 sends the program to
ne, Add/Change Routine,

the operator's choice.

(update)
(direct)
32 characters per record

input a record number (KEY)

the Display Routine, Delete
or to close the file, depending on

Line 120 inputs the record number the operator selected using

the £

ormat set in line 290.

Line 170 deletes the record number the operator selected.

Line 240 prints new data to the record number the operator

selec

Line

ted.

280 closes the file.

Radie fhaek

PAGE 4 - 31

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

/amggar&ngﬁj

A\
N

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING # with PRINT # and
INPUT USING # with INPUT #.

To determine the length of each record you must allot:
- one byte for each character of data
- one byte for each new field of data
- one byte preceeding each positive number

Sample programs:

1@ REM *##% DEMO OF STREAM OQUTPUT TO A DIRECT FILE ##%#%
2B REM

3@ OPEN #1s "NAME/DAT"s MODE=Ws TYPE=Ds LENGTH=8

48 X = 1

5@ PRINT : PRINT "FIRST INITIAL 7"

68 FNAMES = INPUT$(1)

70 PRINT "LAST NAME 7"3

80 LNAME$ = INPUT%(3)

9@ PRINT #1: KEY=X3 FNAME$: LNAME%$

100 INPUT PROMPT="15 THERE ANOTHER NAME (Y/N) 7"35 ANSWER$

11@ IF ANSWER$ = "N" THEN CLOSE #1 ELSE X = X + 1 : GOTO 50
#RUN

FIRST INITIAL 7M
LAST NAME 7WASHI
IS THERE ANOTHER NAME (Y/N) 7Y

FIRGST INITIAL 7C
LAST NAME 7MILLE
IS5 THERE ANOTHER NAME (Y/N) 7Y

FIRST INITIAL 7J

LAST NAME 75MITH

I8 THERE ANOTHER NAME (Y/N) 7N
STOP LINE 110

E-3

Radio fhaek

PAGE 4 - 32

MODEL I/III COMPILER BASIC

TRS-80 @

1@ REM

20 REM

3@ OPEN #1»
40 X = 1

BUILDING DATA FILES

Vi
PR

i
11

"NAME/DAT"s MODE=Rs TYPE=Ds

&5 INPUT #1s KEY=X3 FNAME%s LNAME$

68 IF EOF(#1)

e @ THEN 1:20

7@ PRINT & PRINT "RECORD #"3 X

8@ PRINT FNAME<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>